If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+8u+16+2=29
We move all terms to the left:
u^2+8u+16+2-(29)=0
We add all the numbers together, and all the variables
u^2+8u-11=0
a = 1; b = 8; c = -11;
Δ = b2-4ac
Δ = 82-4·1·(-11)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6\sqrt{3}}{2*1}=\frac{-8-6\sqrt{3}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6\sqrt{3}}{2*1}=\frac{-8+6\sqrt{3}}{2} $
| 12x+35+3x+10=180 | | 3+(n/6)=6 | | 78-9p=–51 | | (u+4)^2+2=29 | | 78+-9p=-51 | | m–23=45 | | 2x=7=-15 | | -10=0.5w-7 | | -73+1u=-58 | | –73+1u=–58 | | -10=0.5x-7 | | 30-5x=-15 | | –73––1u=–58 | | 1/5w-3=-7 | | 2. a+4a-9=41 | | 36/d=13 | | 7^3x=20 | | k/19-62=-60 | | 2(4-2x)-2(x+5)=10 | | -17+5u=8 | | (4x-10)+(6x+3)+(5x+7)=180 | | 18260=c | | 19+2n=15 | | 3/4g+2=11 | | 4x=x+188 | | 83b=-4 | | c/5-8=-4 | | n/3-5=1 | | 4(2-3x)+4x=12 | | 15+6j=3 | | 2(x+1)^+6=134 | | b/11=3;b=33 |